

The power of solar batteries

YOUR GUIDE BOOK

Why we care

Tasmania's rising power bills and winter outages—spoiling fridges and disrupting work-from-home—are tough. Solar batteries can save money and keep homes powered, with a major federal rebate starting July 1, 2025, making them affordable. But social media is full of misleading ads and pushy sales tactics. We're here to cut through the noise.

This 6-part eBook, releasing a chapter weekly, shares clear, honest facts about batteries and the rebate, empowering Tasmanians to choose the right battery.

Each chapter unpacks benefits, limitations, and truths, tailored to our island. Let's explore why batteries matter!

Chapter 1: The Power of Solar Batteries in Tasmania

Chapter 2: How Solar Batteries Work with Your Solar System

Chapter 3: Understanding the Federal Battery Rebate

Chapter 4: Sizing your Battery Needs

Chapter 5: How to Get the Best out of Your battery

Chapter 6: New Installation or Retro fit

Chapter 1

The Power of Solar Batteries in Tasmania

Tasmania is leading Australia's renewable energy charge, targeting 90% renewables by 2030. With one in three homes using solar, batteries are the next step. They store solar energy to power your home day or night, cutting bills and supporting a cleaner future.

Benefits for Tasmanians

- **Save on Bills:** A 10 kWh battery saves \$800-\$1,000 yearly by using stored solar, easing Tasmania's 8% price rise in 2024.
- **Outage Protection:** Winter storms hit rural areas like Huon Valley. Batteries keep essentials running—no candles needed!
- **Go Green:** Batteries cut fossil fuel use, aligning with Tasmania's eco-goals.

Limitations to Understand

- **Upfront Costs:** Batteries cost \$10,000-\$20,000 before rebates, a significant investment.
- **Solar Needs:** Small solar systems (<5 kW) may not charge a battery fully, reducing savings.
- **Space Requirements:** Batteries need a cool, dry space, which some homes lack.
- **Cycle Life:** Lithium-ion batteries last 5,000-10,000 cycles (~10-15 years at one cycle/day). Overuse, like full daily discharges, shortens lifespan.
- **Need for Tailoring:** A battery sized to match solar output and usage (e.g., 10 kWh for a 5 kW system) avoids over-cycling, preserving longevity and savings. In Tasmania's cloudy winters, proper sizing is key.

A rebate on the horizon

What we know so far.....

- Structure: ~30% discount (~\$370/kWh), applied upfront, for 5-50 kWh batteries. Examples: \$3,700 for 10 kWh, \$7,400 for 20 kWh.
- Eligibility: Systems installed from April 6, 2025, qualify if not commissioned until July 1. Must pair with solar (new or existing) and use VPP-ready batteries (e.g., Tesla Powerwall, BYD).
- VPP: Batteries must support virtual power plants, but participation is optional, allowing grid support without commitment.
- One-Time: Rebate is per property, not per battery, encouraging optimal sizing to maximize savings.
- Tasmanian Context: Complements Energy Saver Loan (up to \$10,000 interest-free), addressing 8% energy price rise (2024) and outages in areas like Huon Valley.
- Limitations: Partial cost coverage; small solar systems (<5 kW) reduce savings due to limited energy generation; high demand may cause backlogs or stock shortages (e.g., Tesla, BYD).

Chapter 2

How Solar Batteries Work with Your Solar System

How solar Batteries work with your existing system

In Tasmania, where renewable energy is a priority with a 90% renewable target by 2030, solar batteries team up with your solar panels to store excess energy. During sunny days—especially our long summer hours—panels generate power. Batteries capture what's not used, releasing it at night or during outages, like those common in rural areas during winter storms.

Benefits for Tasmanian Homes

- Grid-Connect Savings with Off-Peak Power: A battery paired with a 5-10 kW solar system stores daytime energy for use during off-peak hours tapping into Tasmania's lower overnight rates (e.g., 15-20c/kWh vs. peak 30c/kWh). This can boost savings to \$800-\$1,200 yearly, especially with the 8% price rise in 2024
- Off-Grid Freedom: For remote areas like Huon Valley, batteries (10-20 kWh) store enough to power essentials off-grid, offering a lifeline during power outages caused by wild weather. Tasmania's rugged landscape faces frequent storms, heavy rains, and flooding—events that can knock out power for days, especially in winter.
- A well-sized off-grid system with a 15-20 kWh battery can keep lights, fridges, and heaters running, reducing reliance on noisy generators. With the July 1, 2025, rebate (~30%, ~\$370/kWh) covering installs from April 6 if not switched on until today, upgrading to off-grid resilience becomes more achievable for rural homes.
- Off-Grid Freedom: For remote spots like Huon Valley, batteries store enough to power essentials off-grid, ideal with a 10-20 kWh capacity expanding on your existing system or replacing tired batteries will be available.
- Rebate Boost: The July 1, 2025, rebate (~30%, ~\$370/kWh) applies if paired with solar—installs from April 6 qualify if not switched on until July 1.

Limitations to Consider

- Winter Impact: Tasmania's cloudy winters limit solar input, requiring larger batteries or systems for reliability.
- Compatibility: Batteries must be VPP-ready, and mismatched sizes (e.g., 5 kWh battery with 10 kW solar) waste potential.
- Small Solar Challenge: Systems under 5 kW may not generate enough to charge a 10 kWh battery fully, reducing savings (e.g., a 3 kW setup might only fill half).
- Consider increasing your solar array size before adding a battery—upgrading to at least 5-7 kW can ensure better charging, though this adds upfront costs and may require more roof space.
- Smart Solar Integration: Devices like the Australian-engineered CATCH Power smart hot water diverters enhance this setup by redirecting surplus solar to heat water, a major energy use (25% of Tasmanian homes).
- This boosts self-consumption by 30-40%, cutting bills further, especially with systems as small as 5 kW, complementing battery storage making the sun work for you and not your battery or Tasnetworks.

Tasmanian Tips

Long summer days maximize charging, but winter clouds mean sizing your system right—match battery capacity to solar output. Rural homes benefit most with off-grid setups and smart solar diverters.

Chapter 3

Understanding the Federal Battery Rebate

Understanding the Federal rebate

The \$2.3 billion Cheaper Home Batteries Program, live since July 1, 2025, provides a ~30% discount on small-scale battery systems (5-100 kWh nominal capacity).

In 2025, this equates to 9.3 small-scale technology certificates (STCs) per kWh of usable capacity—roughly \$372/kWh based on \$40/STC.

For a 10 kWh battery, that's \$3,720 off, reducing costs from \$10,000 to \$6,280; a 20 kWh system drops from \$20,000 to \$12,560.

The discount applies to the first 50 kWh of usable capacity, delivered via solar retailers under the Small-scale Renewable Energy Scheme (SRES), and will decline yearly until 2030.

Eligibility and Requirements:

Batteries installed from April 6, 2025, and activated post-July 1, 2025, qualify if paired with solar and VPP-ready. They must be on the Clean Energy Council (CEC) approved list, with CEC-approved inverters, and comply with state/territory laws,

Benefits For Tasmanian Homes

- Cost Savings: Households can save \$700-\$1,600 yearly on bills, with \$300-\$900 from batteries, crucial after the 8% price rise in 2024.
- Loan Stacking: Pairs with Tasmania's Energy Saver Loan (up to \$10,000 interest-free), easing rural upgrades.
- Outage Resilience: In Huon Valley, where storms disrupt power, batteries keep homes running.
- Grid-Wide Impact: Reduces reliance on gas generation, lowering costs for all Tasmanians.

Limitations to Watch

- Partial Coverage: A \$10,000 battery still costs \$6,280 post-rebate.
- Small Solar Limits: Systems under 5 kW may not maximize savings due to limited charging.
- Demand Delays: High uptake since July 1 risks backlogs or shortages.
- Exclusions: No support for EV batteries or post-rebate capacity upgrades.

Consumer Tips

- Beware of ads promising instant savings—verify CEC approval and safety compliance. Check SolarQuotes for guidance.
- They must be installed by Industry approved installers who are registered with the SAA (Solar Accredited Australia)
- Ask if materials are distributed in Australia if distributed overseas lengthy waits for replacement , dealing with distributors in different time zones.
- Pushy sales tactics ! there is no rush the rebate has been pledged for 5 years.

Chapter 4

Sizing your Battery Needs

Getting the Size Right

Choosing the right battery size depends on your solar system and usage. At fluent Electrical we believe every system with a battery should be tailored design to how you use energy and now and in the future it's why always ask for electticyt bills to model a system as well as what plans you may have in the future.

In Tasmania, where summer days offer ample sunlight but winter clouds reduce output, a battery should match your consumption.

Benefits of Proper Sizing

- **Optimized Savings:** A well-sized battery (e.g., 10 kWh with 5 kW solar) maximizes the ~\$350/kWh rebate from July 1, 2025, boosting savings to \$800-\$1,200 yearly with off-peak use.
- **Outage Resilience:** A 15-20 kWh battery keeps essentials running during storms, common in Tasmania's wild winters.
- **Off-Grid Suitability:** Larger capacities (20 kWh) support remote homes, reducing generator reliance.
- **Efficient Capacity Use:** Sizing to 80% Depth of Discharge (DoD) ensures the battery operates at its peak performance, avoiding undersizing (e.g., a 5 kWh battery at 100% DoD wears out faster and underperforms). This maximizes usable energy—80% of 10 kWh is 8 kWh daily—extending lifespan and aligning with rebate value.

Issues with Incorrect Sizing

- Incorrectly sizing a battery can lead to significant problems
- Undersizing Risks: Pairing a 5 kWh battery with a 10 kW solar system forces deep discharges beyond 80% DoD
- Reduces lifespan from 6,000 to 3,000 cycles
- Leaves homes vulnerable during outages
- Oversizing a system will give you a poor battery utilization an example would be having a utilization of 20% paying for a battery only using 20% of its usable capacity would be a waste of money
- A battery Utilization of 80% is desirable.
- Occupies unnecessary space, with unused capacity degrading over time
- In Tasmania, winter clouds and all-electric loads heighten demand
- Errors diminish the ~\$350/kWh rebate's benefits, risking financial loss and unreliable power

Limitations to Consider

- Battery's have limited areas to be installed atleast 1.0 meter away from windows and required fire proof barriers if being installed adjacent to a habitable room
- Space Needs: Bigger batteries (15-20 kWh) require cool, dry spaces, challenging for smaller homes as well as complying with Australians standards for Specific locations.
- Small Solar Mismatch: Systems under 5 kW struggle to charge even a 5 kWh battery fully, limiting benefits.

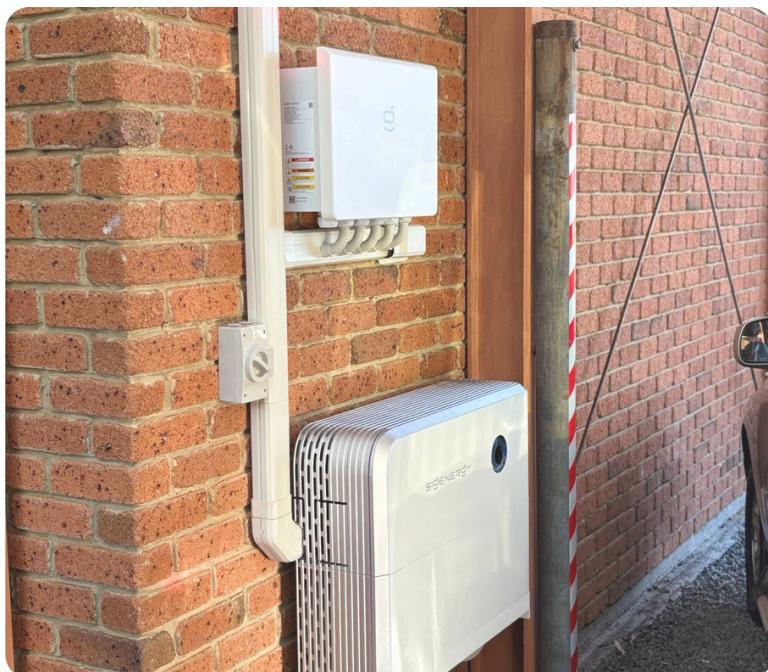
Blackout Autonomy, Especially for Rural Tasmania

In rural Tasmania, where blackouts from wild weather—storms, floods, and snow—can last days, battery autonomy is vital. Areas like the West Coast and Huon Valley often face delayed power restoration due to sparse infrastructure susceptible to nature's impact.

Autonomy can be easily calculated once you understand the difference between essential and nonessential loads in the house, and this varies for everyone! Essential loads, such as lighting, fridge, and heating, must stay on, while nonessential loads like air conditioning and entertainment systems can wait. This can easily increase or reduce the size of the battery required, depending on understanding these loads and how long they need to operate.

Essential Loads and Complete House Backup

For rural Tasmanian homes, understanding essential loads and complete backup is crucial. Essential loads—lighting, fridge, medical devices—require 1-3 kW and can be covered by a 5-10 kWh battery, ensuring safety during short outages. Complete house backup, powering all loads (e.g., heating, water pumps, appliances), demands 5-10 kW and a 20-30 kWh battery, suitable for prolonged blackouts common in wild weather seasons.


Current Solar Sizing to Household Demands

Matching current solar sizing to household demands is key in Tasmania's all-electric homes, where daily usage averages 15-25 kWh. A 3 kW solar system generates 12-15 kWh on sunny days but falls short in winter clouds, needing a 5-10 kWh battery for backup. A 5 kW system, producing 20-25 kWh, aligns better with peak demands (e.g., heating, hot water), especially with a solar hot water diverter like CATCH Power offsetting 90-95% of hot water use.

The battery rebate rebate supports upgrading to 5-7 kW solar and 10-15 kWh batteries, ensuring coverage for winter loads and outages, unlike undersized mainland setups reliant on gas.

Future Expansion Redundancy

Planning for future expansion redundancy ensures long-term value. As households add electric vehicles or appliances, a 10 kWh battery may suffice today but could fall short in 5-10 years. Installing a scalable system (e.g., 15-20 kWh with room for 5-10 kWh more) leverages the rebate now (\$5,592 for 15 kWh) and avoids costly retrofits. In Tasmania, where all-electric growth is rising, a solar hot water diverter can reduce future battery load, supporting off-grid transitions and winter resilience, countering the need for frequent upgrades.

Battery Modulating

Battery modulating adjusts power output to match demand, extending lifespan and efficiency. In Tasmania, where winter loads peak, a smart battery system can prioritize essential loads (e.g., 2 kW) during outages, reserving capacity for later. Paired with a 5-10 kWh battery and the rebate (\$3,720 for 10 kWh), this modulation optimizes the 80% DoD, preventing over-discharge.

A solar hot water diverter enhances this by managing surplus solar for hot water, ensuring reliable performance during cloudy days, a key advantage over static mainland systems.

Proper Monitoring Through App-Based UI with Systems Educating and Refining Consumption Habits

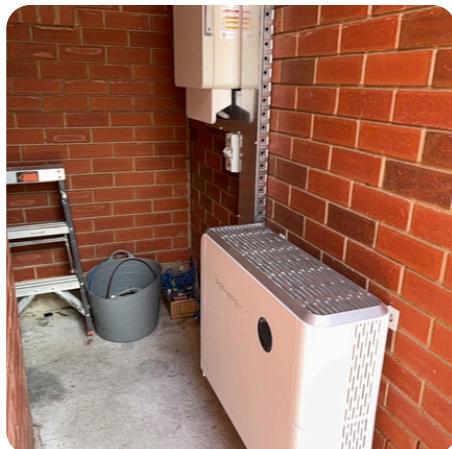
Effective monitoring via app-based user interfaces (e.g., Tesla app) provides real-time insights into solar, battery, and diverter performance in Tasmania's variable climate. These apps track usage patterns—such as peak demand at 6-9 PM—and suggest refinements, like shifting loads to off-peak hours or maximizing diverter use for hot water. This educates users to reduce waste, optimize 80% DoD, and boost savings to \$800-\$1,200 yearly. For rural homes, this ensures efficient outage management, countering unmonitored systems pushed by competitors.

Consumer Tips and checklist

- Send 12 months of bills – we model your exact daily kWh and peak loads.
- Aim for 80% DoD – 10 kWh battery = 8 kWh usable daily = 6,000+ cycles.
- Plan for EV or heat pump – add 5–10 kWh redundancy now, save \$5,000+ later potentially
- Use CATCH Power diverter or a similar device – cuts hot water load, reduces battery size needed.
- Avoid <5 kW solar – upgrade panels first or battery stays half-charged.
- Get AC-coupled quote – keeps existing inverter, saves \$1,500–\$2,500.
- Confirm VPP-ready & CEC – required for \$372/kWh rebate.
- Ask "What if I grow?" – good installers size for 5–10 years ahead.

Chapter 5

How to Get the Best
out of Your battery


1. Charge Smart – Daytime Solar First

Your solar panels peak between 10am and 3pm — that's when your battery should fill up. Set your inverter to "Solar Self-Consumption" mode via the app (Tesla, Sungrow, SolarEdge). This ensures free solar energy is stored first, before any off-peak grid charging. In Tasmania's long summer days, this alone can push self-consumption above 70%, adding \$200–\$300/year in savings.

How to get the Best out of your Battery

2. Discharge Smart – Follow the 80% DoD Rule

Never drain your battery below 20% daily. A 10 kWh battery gives 8 kWh usable at 80% Depth of Discharge (DoD) — enough for lights, fridge, and Wi-Fi. This preserves 6,000–8,000 cycles (8 to 10 years) instead of 5,000 (5 years). Use the app to set a reserve threshold — especially in winter when solar is low and outages are likely * *This is an Approximate with the real life of Lithium Iron phosphate batteries still needing a consumer test.*

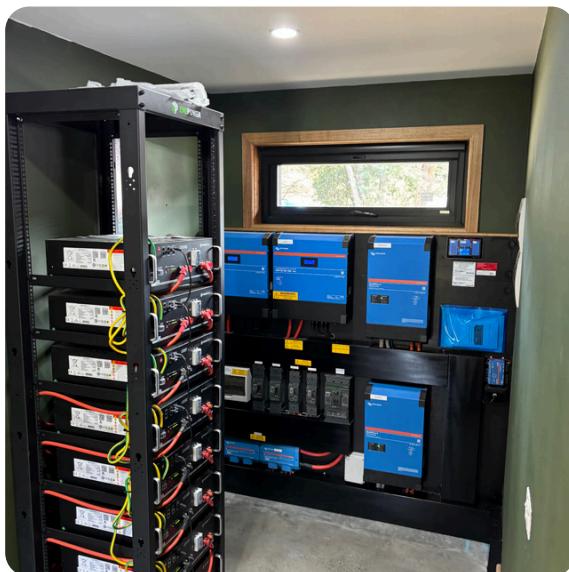
3. Pair with a CATCH Power Hot Water Diverter or Smart port part of your integrated system.

Hot water is 25% of Tasmanian energy use. A CATCH Power diverter sends surplus solar straight to your electric hot water tank before the battery. This cuts your hot water bill by 90–95% and frees your battery for essential loads. With just 5 kW solar, this combo boosts annual savings from \$650 to \$1,050+ — no extra roof space needed.

Some integrated battery systems will have an external port for meaning there will be no need for a catch power device ! The principle is exactly the same with the system diverting excess solar to the Hot water service. Heat pump heating and cooling can be utilised to operate on the excess solar as well.

4. Master Your App – Time-of-Use & Alerts

Most VPP-ready batteries (Tesla, BYD, Sungrow) have Time-of-Use (ToU) modes. Set charging from 12am–6am (15–20c/kWh) and discharge during 5–9pm peak (30c+/kWh). Enable load-shifting alerts — e.g., “Run dryer now” when solar is high. Tesla’s Storm Watch auto-pre-charges before wild weather. These features add \$250–\$400/year in savings with zero effort


Fine tuning your Electricity usage gives you a lot more autonomy and freedom, understanding how you use energy will greatly improve savings and ROI of your battery system - have fun with your system.

5. Annual Maintenance – 15 Minutes, 10+ Years

Keep your battery happy with simple upkeep. Clean inverter vents with a soft brush (5 mins). Check app for battery temp — 15–25°C ideal. Update firmware automatically. Every 3 years, have your installer inspect cables. Schedule this with your annual solar panel clean — one visit, one bill. Proper care ensures full rebate value and 15-year lifespan.

6. Winter Survival – Plan for Cloudy Days

Tasmania's June solar output drops 50%. Pre-charge your battery off-peak the night before cloudy stretches. Set a 30% morning reserve for heaters until solar kicks in at 10am. Keep 2 kWh spare for water pump circulation to prevent frozen pipes. With smart settings, a 10 kWh battery still powers essentials for 20+ hours during winter blackouts.

Consumer Tips and checklist

- Set "Solar Self-Consumption" mode in your app – charges battery with free solar first (10am–3pm).
- Never discharge below 20% daily – protects 6,000–8,000 cycles (12–16 years).
- Add a CATCH Power diverter – cuts hot water bill 90–95%, frees battery for essentials.
- Enable Time-of-Use (ToU) – charge 12am–6am (15–20c/kWh), discharge 5–9pm (30c+).
- Turn on Storm Watch (Tesla) or weather alerts – auto pre-charge before outages.
- Clean inverter vents yearly – 5 mins with a soft brush prevents overheating..
- Check battery temp in app – keep 15–25°C for peak performance.
- Reserve 30% in winter mornings – covers heaters until solar starts at 10am..
- Shift big loads (dryer, oven) to 11am–2pm solar window via app alerts.
- Schedule maintenance with solar clean – one visit, full system health check.

Chapter 6

New Installation or retro fit

1. The Two Ways to Add a Battery

AC-coupled adds a second inverter beside your current solar inverter — ideal for retrofits. DC-coupled replaces your old inverter with a single hybrid unit — best for new installs or full upgrades. In Tasmania, 90% of battery retrofits are AC-coupled because they keep your working solar inverter and avoid roof rewiring.

2. AC-Coupled – The Retrofit King

AC-coupling works with any existing inverter — even 10-year-old Fronius, SMA, or ABB. No panel rewiring, no roof work. Add a Tesla Gateway, Enphase IQ, or SolarEdge Home Battery. Efficiency is 92–94% round-trip (tiny 2–5% loss vs DC). Cost: battery + AC inverter (~\$1,500–\$2,500). Rebate eligible and zero e-waste.

3. DC-Coupled – The Efficiency King

DC-coupling uses a single hybrid inverter (Sungrow, Growatt, Selectronic) that connects panels and battery directly. Efficiency hits 97–99%. Built-in VPP, EV charging, and future expansion. Downside: you must replace your working inverter, creating e-waste. Cost: battery + new hybrid (~\$3,000–\$5,000). Choose this only for new builds or dead inverters.

4. Retrofit Decision Tree

If your solar inverter is under 5 years old, go AC-coupled — keep it. If it's failing or you want max efficiency, go DC-coupled. Enphase microinverters? AC only (IQ Battery). SolarEdge HD-Wave? Both work. Fluent rule: Keep a working inverter → AC. Planning full upgrade → DC. We'll model both options with your bills.

AC vs DC Coupling video explained:

Consumer Tips and checklist

- downside to AC coupling multiple inverters greater efficiency losses
- Take a clear photo of your solar inverter – send it; we confirm AC/DC options in 24 hrs.
- If your inverter is under 10 years old and working – go AC-coupled to keep it.
- AC-coupled = no roof rewiring – fastest install, lowest cost, full rebate.
- DC-coupled = only if replacing a failed inverter – higher efficiency but more upfront.
- Ask for round-trip efficiency – expect $\geq 92\%$ (AC) or $\geq 97\%$ (DC).
- Check rebate eligibility – battery + inverter must be CEC-approved and VPP-ready.
- Get both AC and DC quotes – compare total cost, not just battery price.
- Confirm no e-waste – AC avoids throwing out a working inverter.
- Verify install includes metering – needed for accurate app monitoring and ToU savings.
- Ask "Can I add more later?" – good systems allow modular expansion.

References & Links

Smart energy Council - Industry council

CBOS - Tasmanian Building regulator

Clean Energy Council - Industry Approval council

Solar inverters, Solar Panels & Batteries

Solar Quotes - Independent Consumer resource

Our website & Socials

Fluent Electrical Website

Facebook Page

Instagram Page